

C ++
Programming with

KYLA McMULLEN
Elizabeth matthews

June Jamrich Parsons

Australia • Brazil • Canada • Mexico • Singapore • United Kingdom • United States

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This is an electronic version of the print textbook. Due to electronic rights restrictions,
some third party content may be suppressed. Editorial review has deemed that any suppressed
content does not materially affect the overall learning experience. The publisher reserves the right
to remove content from this title at any time if subsequent rights restrictions require it. For
valuable information on pricing, previous editions, changes to current editions, and alternate
formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for
materials in your areas of interest.

Important Notice: Media content referenced within the product description or the product
text may not be available in the eBook version.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

© 2022 Cengage Learning, Inc.

Unless otherwise noted, all content is © Cengage.

For product information and technology assistance, contact us at
Cengage Customer & Sales Support, 1-800-354-9706

or support.cengage.com.

For permission to use material from this text or product, submit all requests
online at www.cengage.com/permissions.

Readings from Programming with C++
Kyla McMullen, Elizabeth Matthews,
June Jamrich Parsons

SVP, Higher Education Product Management:
Erin Joyner

VP, Product Management: Thais Alencar

Product Team Manager: Kristin McNary

Associate Product Manager: Tran Pham

Product Assistant: Tom Benedetto

Learning Designer: Mary Convertino

Senior Content Manager: Maria Garguilo

Digital Delivery Lead: David O’Connor

Technical Editor: John Freitas

Developmental Editor: Lisa Ruffolo

Vice President, Marketing – Science, Technology,
& Math: Jason Sakos

Senior Director, Marketing: Michele McTighe

Marketing Manager: Cassie L. Cloutier

Marketing Development Manager:
Samantha Best

Product Specialist: Mackenzie Paine

IP Analyst: Ashley Maynard

IP Project Manager: Cassidie Parker

Production Service: SPi Global

Designer: Erin Griffin

Cover Image Source: echo3005/ShutterStock.com

Printed in Mexico
Print Number: 01	 Print Year: 2020

Library of Congress Control Number: 2020922802

ISBN: 978-0-357-63775-3

Cengage
200 Pier 4 Boulevard
Boston, MA 02210
USA

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein
may be reproduced or distributed in any form or by any means, except as
permitted by U.S. copyright law, without the prior written permission of the
copyright owner.

Cengage is a leading provider of customized learning solutions with
employees residing in nearly 40 different countries and sales in more than
125 countries around the world. Find your local representative at
www.cengage.com.

To learn more about Cengage platforms and services, register or access
your online learning solution, or purchase materials for your course, visit
www.cengage.com.

Notice to the Reader
Publisher does not warrant or guarantee any of the products described
herein or perform any independent analysis in connection with any of the
product information contained herein. Publisher does not assume, and
expressly disclaims, any obligation to obtain and include information other
than that provided to it by the manufacturer. The reader is expressly warned
to consider and adopt all safety precautions that might be indicated by the
activities described herein and to avoid all potential hazards. By following
the instructions contained herein, the reader willingly assumes all risks in
connection with such instructions. The publisher makes no representations or
warranties of any kind, including but not limited to, the warranties of fitness
for particular purpose or merchantability, nor are any such representations
implied with respect to the material set forth herein, and the publisher takes
no responsibility with respect to such material. The publisher shall not be
liable for any special, consequential, or exemplary damages resulting, in
whole or part, from the readers’ use of, or reliance upon, this material.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

WCN: 02-300

preface� xiii

Module 1
Computational Thinking� 1

Module 2
Programming Tools� 15

Module 3
Literals, Variables, and Constants� 35

Module 4
Numeric Data Types and Expressions� 49

Module 5
Character and String Data Types� 63

Module 6
Decision Control Structures� 83

Module 7
Repetition Control Structures� 103

Module 8
Arrays� 125

Module 9
Functions� 145

Module 10
Recursion� 165

Module 11
Exceptions� 185

Module 12
File Operations� 205

Module 13
Classes and Objects� 231

Module 14
Methods� 245

Module 15
Encapsulation� 271

Module 16
Inheritance� 291

Module 17
Polymorphism� 309

Module 18
Templates� 319

Module 19
Linked List Data Structures� 333

Module 20
Stacks and Queues� 353

Module 21
Trees and Graphs� 371

Module 22
Algorithm Complexity and Big-O Notation� 395

Module 23
Search Algorithms� 411

Module 24
Sorting Algorithms� 427

Module 25
Processor Architecture� 455

Module 26
Data Representation� 469

Module 27
Programming Paradigms� 491

Module 28
User Interfaces� 507

Module 29
Software Development Methodologies� 525

Module 30
Pseudocode, Flowcharts, and Decision Tables� 541

Module 31
Unified Modeling Language� 557

GLOSSARY� 569
Index� 583

Brief Contents

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

preface� xiii

Module 1
COMPUTATIONAL THINKING� 1
Algorithms� 2

Algorithm Basics� 2
Programming Algorithms� 2
“Good” Algorithms� 3
Selecting and Creating Algorithms� 4

Decomposition� 4
Decomposition Basics� 4
Structural Decomposition� 5
Functional Decomposition� 6
Object-Oriented Decomposition� 7
Dependencies and Cohesion� 7

Pattern Identification� 8
Pattern Identification Basics� 8
Repetitive Patterns� 8
Classification Patterns� 9

Abstraction� 9
Abstraction Basics� 9
Classes and Objects� 10
Black Boxes� 11
Levels of Abstraction� 12

Summary� 12

Key Terms � 13

Module 2
PROGRAMMING TOOLS� 15
Programming Languages� 16

Hello World!� 16
Programming Language Basics� 16
Syntax and Semantics� 17
Core Elements� 19
Your Toolbox� 19

Coding Tools� 20
Program Editors� 20
Basic Structure� 21

Build Tools� 22
The Toolset� 22
Compilers� 23
Preprocessors and Linkers� 24
Virtual Machines� 25
Interpreters� 26

Debugging Tools� 27
Programming Errors� 27
Syntax Errors� 28
Runtime Errors� 29
Semantic Errors� 29
Debugging Utilities� 30

IDEs and SDKs� 32
Integrated Development Environments� 32
Software Development Kits� 32

Summary� 33

Key Terms � 34

Module 3
LITERALS, VARIABLES, AND
CONSTANTS� 35
Literals� 36

Numeric Literals� 36
Character and String Literals� 37
Tricky Literals� 38

Variables and Constants� 38
Variables� 38
Constants� 40
The Memory Connection� 41

Assignment Statements� 41
Declaring Variables � 41
Initializing Variables� 42
Assigning Variables� 43

Input and Output� 44
Input to a Variable � 44
Output from a Variable� 46

Summary� 46

Key Terms � 47

Table of Contents

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Table of Contents v

Module 4
Numeric Data Types and
Expressions	 49
Primitive Data Types	 50

Data Types	 50
Primitive Data Types	 50
Composite Data Types	 51

Numeric Data Types	 52
Integer Data Types	 52
Floating-Point Data Types	 53

Mathematical Expressions	 54
Arithmetic Operators	 54
Order of Operations	 56
Compound Operators	 56

Numeric Data Type Conversion	 58
Convert Integers and Floating-Point Numbers	 58
Rounding Quirks	 59

Formatting Output	 60
Formatted Output	 60
Formatting Parameters	 60

Summary	 62

Key Terms	 62

Module 5
CHARACTER AND STRING DATA TYPES	 63
Character Data Types	 64

Working with Character Data	 64
Character Memory Allocation	 65
Digits	 66
Character Output Format 	 67
Character Manipulation	 68

String Data Types	 69
Working with String Data	 69
Escape Characters	 70
String Indexes	 71

String Functions	 72
String Manipulation	 72
String Length	 72
Change Case	 73
Find the Location of a Character 	 74
Retrieve a Substring	 75

Concatenation and Typecasting	 76
Concatenated Output	 76
Concatenated Variables	 77
Coercion and Typecasting	 78

Summary	 80

Key Terms	 81

Module 6
Decision Control
Structures	 83
If-Then Control Structures	 84

Control Structures	 84
Decision Logic	 85
If-Then Structures	 85

Relational Operators	 87
The Equal Operator	 87
Using Relational Operators	 88
Boolean Expressions and Data Types	 89

Multiple Conditions	 91
If-Then-Else Structures	 91
Nested-If Structures	 93
Else If Structures	 96
Fall Through	 97

Conditional Logical Operators	 100
The AND Operator	 100
The OR Operator	 101

Summary	 102

Key Terms	 102

Module 7
Repetition Control
Structures	 103
Count-Controlled Loops	 104

Loop Basics	 104
Control Statements	 105
For-Loops	 105
User-Controlled Loops	 108

Counters and Accumulators	 109
Loops That Count	 109
Loops That Accumulate	 111

Nested Loops	 112
Loops Within Loops	 112
Inner and Outer Loops	 113

Pre-Test Loops	 116
While-Loops	 116
Infinite Loops	 117
Breaking Out of Loops	 118

Post-Test Loops	 120
Do-Loops	 120
Test Conditions and Terminating

Conditions	 123

Summary	 124

Key Terms	 124

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Programming with C++vi

Module 8
Arrays	 125
Array Basics	 126

Magic Rectangles	 126
Array Characteristics	 127
Array Use Cases	 128

One-Dimensional Arrays	 128
Initialize Numeric Arrays� 128
Initialize String Arrays	 130

Array Input and Output	 130
Output an Array Element	 130
Index Errors	 131
Traverse an Array	 132
Input Array Elements	 133

Array Operations	 135
Change an Array Element	 135
Find an Array Element	 135
Sum Array Elements	 137

Two-Dimensional Arrays	 137
Two-Dimensional Array Basics	 137
Initialize a Two-Dimensional Array	 138
Output a Two-Dimensional Array	 139
Sum Array Columns and Rows	 141

Summary	 143

Key Terms	 144

Module 9
Functions	 145
Function Basics	 146

Function Classifications	 146
Programmer-Defined Functions	 146
Flow of Execution	 147
Function Advantages	 147

Void Functions	 148
Void Function Basics	 148
Function Pseudocode	 149

Functions with Parameters	 150
Function Parameters	 150
Function Arguments	 150
The Handoff	 152

Return Values	 153
Return Values	 153
Return Type	 156
Function Signature	 157

Scope	 157
Scope Basics	 157
Pass by Value	 160

Pass by Reference	 161
Namespaces	 162

Summary	 163

Key Terms	 163

Module 10
Recursion	 165
Key Components of Recursion	 165

The Recursive Mindset	 165
Recursion Basics	 167
When to Use Recursion	 171

�Using Recursion to Solve Complex
Problems	 171
Designing Recursive Structures	 171
Linear Recursion	 174
Branching Recursion	 175

Managing Memory during Recursion	 179
Memory Management	 179
Stable Recursion	 182

Summary	 183

Key Terms	 183

Module 11
Exceptions	 185
Defining Exceptions	 185

Errors in Code	 185
Exception Types	 187

Dealing with Exceptions	 189
Handling Others’ Exceptions	 189
Try and Catch Blocks	 189

Using Exceptions	 198
Throwing Exceptions	 198
When to Bail	 202

Summary	 203

Key Terms	 203

Module 12
File Operations	 205
File Input and Output	 206

The Purpose of Files	 206
Anatomy of a File	 210
File Usage	 212

Processing a File	 214
Accessing Files	 214
Streaming and Buffering	 214

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Table of Contents vii

Reading from a File	 216
Opening a File for Reading	 216
Reading from a File	 218

Closing a File	 222
Closing Files after Use	 222
Trying to Close a File	 222

Creating and Writing New Files	 222
Creating a File	 222
Opening a File for Writing	 223
Writing to and Appending a File	 224
Anticipating Exceptions	 228

Summary	 229

Key Terms	 230

Module 13
Classes and Objects	 231
Classes in Object-Oriented Programming	 232

Representing the Real World with Code	 232
Using Classes	 232
Class Components	 233

Using Objects	 236
Creating Objects	 236
Objects as Variables	 238
Object-Oriented Features and Principles	 238

Using Static Elements in a Class	 239
Static Member Variables	 239
Static Methods	 240
Static Classes	 241

Characteristics of Objects
in Object-Oriented Programs	 242
Object Identity	 242
Object State	 242
Object Behavior	 243

Summary	 244

Key Terms	 244

Module 14
Methods	 245
Using Methods	 245

Why Use Methods? 	 245
Anatomy of a Method	 251
Using Methods	 251

Changing the Default Behavior
of an Object	 255
Using Objects as Regular Variables	 255
Overloading Methods	 258
Setting One Object to Equal Another	 262

Method Cascading and Method Chaining	 263
Calling Multiple Methods on the Same Object	 263

Using Constructors	 266
Specifying How to Construct an Object	 266
Constructing an Object from Another Object	 268

Summary	 269

Key Terms	 269

Module 15
Encapsulation	 271
Components of Class Structure	 271

Data Hiding	 271
Designing Objects	 273
Self-Reference Scope	 276

Accessor and Mutator Context	 277
Viewing Data from an Object	 277
Changing Data in an Object	 278

Using Constructors	 280
Parameters and Arguments	 280
Default Parameters and Constructor

Overloading	 281
Encapsulation Enforcement

with Access Modifiers	 283
Access Modifiers	 283
Public Variables and Methods	 283
Private Variables and Methods	 284

Interfaces and Headers	 286
Interfaces	 286
Programming an Interface	 287

Summary	 290

Key Terms	 290

Module 16
Inheritance	 291
Using Inheritance	 291

Creating Classes from Other Classes	 291
Family Trees in OOP	 292
Levels of Access	 295

Necessary Components for Inheritance	 296
Defining a Parent Class	 296
Defining a Child Class	 297

Creating a Child Class That Inherits
from a Parent Class	 298
Inheritance Syntax	 298
Customizing Behavior	 301

Summary	 307

Key Terms	 307

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Programming with C++viii

Module 17
Polymorphism	 309
The Purpose of Polymorphism	 309

Flexibility While Coding	 309
Dynamic Binding Under the Hood	 314

Polymorphism Basics	 314
Classes Within Classes	 314
Objects as Other Objects	 315

Virtual Functions	 316
Anticipating Customization	 316
Abstract Classes	 317

Summary	 318

Key Terms	 318

Module 18
Templates	 319
Template Basics	 319

Data Abstraction	 319
Template Structure and Use	 322

Tricky Templating	 328
Advanced Templating	 328
Templated Objects as Arguments	 330

Templates as a Problem-Solving
Approach	 331
Designing a Template	 331
When to Use Templates	 331

Summary	 331

Key Terms	 332

Module 19
Linked List Data
Structures	 333
Linked List Structures	 334

Data Structure Selection	 334
Data Structure Implementation	 335
Linked List Basics	 336

Types of Linked Lists	 337
Singly Linked Lists	 337
Doubly Linked Lists	 338
Circular Linked Lists	 339
Linked List Characteristics	 339

Code a Linked List	 342
The Node Class	 342
The LinkedList Class	 343
The Append Method	 343
Linked List Traversal	 345

The Find Method	 346
The Insert Method	 347

Summary	 350

Key Terms	 351

Module 20
Stacks and Queues	 353
Stacks	 353

Stack Basics	 353
Stack Use Cases	 355
Built-in Stacks	 356
Code a Stack	 357

Queues	 362
Queue Basics	 362
Queue Use Cases	 363
Code a Queue	 364

Summary	 369

Key Terms	 369

Module 21
Trees and Graphs	 371
Nonlinear Data Structures	 371

Linear versus Nonlinear Structures	 371
Nonlinear Building Blocks	 373

Tree Structures	 373
Tree Basics	 373
Tree Properties	 376
Trees as Recursive Structures	 376

Solving Problems Using Trees	 379
Tree Applications	 379
Data Storage in Trees	 380

Graph Structures	 387
Graph Basics	 387
Directed and Undirected Graphs	 388

Solving Problems with Graphs	 388
Graph Applications	 388
Computing Paths	 389

Summary	 394

Key Terms	 394

Module 22
Algorithm Complexity
and Big-O Notation	 395
Big-O Notation	 396

Algorithm Complexity	 396

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Table of Contents ix

Asymptotic Analysis	 397
Asymptotic Notation	 398

Time Complexity	 398
Big-O Metrics	 398
Constant Time	 399
Linear Time	 399
Quadratic Time	 400
Logarithmic Time	 401

Space Complexity	 403
Memory Space	 403
Constant Space Complexity	 404
Linear Space Complexity	 404

Complexity Calculations	 405
Line-by-Line Time Complexity	 405
Combine and Simplify	 406
A Mystery Algorithm	 407

Summary	 409

Key Terms	 409

Module 23
Search Algorithms	 411
Using Search Algorithms	 412

Search Basics	 412

Performing a Linear Search	 413
Looking for a Needle in a Haystack	 413
Evaluating Search Time	 416

Performing a Binary Search	 416
Shrinking the Search Space	 416
Implementing Binary Search	 418

Using Regular Expressions
in Search Algorithms	 423
Specifying a Search Pattern	 423
Regular Expression Search Operators	 423

Summary	 426

Key Terms	 426

Module 24
Sorting Algorithms	 427
Qualities of Sorting Algorithms	 428

Ordering Items	 428
Time Complexity in Sorting Algorithms	 428
Sorting Properties	 430

Bubble Sort	 431
Defining the Bubble Sort Algorithm	 431
Bubble Sort Properties	 437

Quicksort	 438
Defining the Quicksort Algorithm	 438
Quicksort Properties	 446

Merge Sort	 447
Defining the Merge Sort Algorithm	 447
Merge Sort Properties	 453

Summary	 454

Key Terms	 454

Module 25
Processor Architecture	 455
Processor Organization	 456

Integrated Circuits	 456
Moore’s Law	 458
CPUs	 458

Low-Level Instruction Sets	 459
Microprocessor Instruction Sets	 459
RISC and CISC	 460
Machine Language	 460
Assembly Language	 461

Microprocessor Operations	 462
Processing an Instruction	 462
The Instruction Cycle	 462

High-Level Programming Languages	 464
Evolution	 464
Teaching Languages	 465
The C Family	 465
Web Programming Languages	 466
Characteristics	 466
Advantages and Disadvantages	 467

Summary	 467

Key Terms	 468

Module 26
Data Representation	 469
Bits and Bytes	 470

Digital Data	 470
Bits	 471
Bytes	 472

Binary	 474
Binary Numbers	 474
Binary to Decimal	 475
Decimal to Binary	 476
Binary Addition	 477
Negative Numbers	 478

Hexadecimal	 480
Colors	 480
Hexadecimal Numbers	 481

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Programming with C++x

Binary-Hex-Binary Conversions	 481
Hex-Decimal Conversion	 482
Information Density	 483

ASCII and Unicode	 483
ASCII	 483
Extended ASCII	 484
Unicode	 485

Memory Allocation	 486
Memory and Storage	 486
Storage Devices	 487
Memory	 487

Summary	 489

Key Terms	 489

Module 27
Programming Paradigms	 491
Imperative and Declarative Paradigms	 492

Think Outside the Box	 492
The Procedural Paradigm	 493

Procedural Basics	 493
Characteristics of Procedural Programs	 494
Procedural Paradigm Applications	 496

The Object-Oriented Paradigm	 497
Objects, Classes, and Methods	 497
Characteristics of Object-Oriented Programs	 499
Object-Oriented Applications	 501

Declarative Paradigms	 501
Declarative Basics	 501
Characteristics of the Declarative

Paradigm	 504
Applications for Declarative Paradigms	 504

Summary	 505

Key Terms	 505

Module 28
User Interfaces	 507
User Interface Basics	 508

UI and UX	 508
UI Components	 508
Selecting a UI	 510

Command-Line User Interfaces	 510
Command-Line Basics	 510
Command-Line Program Design	 510

Graphical User Interfaces	 512
GUI Basics	 512
GUI Program Design	 514

Voice User Interfaces	 515
Voice Interface Basics	 515
Speech Recognition	 515

Speech Synthesis	 516
Designing Programs for Voice User Interfaces	 517

Virtual Environment Interfaces	 517
Virtual Environments	 517
Virtual Environment Interface Components	 518
Programming the Virtual Interface	 519

Accessibility and Inclusion	 520
Accessibility Guidelines	 520
Inclusive Design	 521

Summary	 524

Key Terms	 524

Module 29
Software Development
Methodologies	 525
Software Development	 526

The Software Development Life Cycle	 526
Efficiency, Quality, and Security	 527

The Waterfall Model	 528
Structured Analysis and Design	 528
Waterfall Advantages and Disadvantages	 529

The Agile Model	 530
Incremental Development	 530
Agile Methodologies	 530
Agile Advantages and Disadvantages	 531

Coding Principles	 532
Efficient Coding	 532
Modularized Code	 533
Clean Coding	 534
Secure Coding	 534
Success Factors	 536

Testing	 536
Levels of Testing	 536
Unit Testing	 537
Integration Testing	 538
System Testing	 539
Acceptance Testing	 539
Regression Testing	 539

Summary	 540

Key Terms	 540

Module 30
Pseudocode, Flowcharts,
and Decision Tables	 541
Pseudocode	 542

From Algorithms to Pseudocode	 542
Pseudocode Basics	 544
Pseudocode Guidelines	 545
Writing Pseudocode	 547

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Table of Contents xi

Flowcharts	 548
Flowchart Basics	 548
Drawing Flowcharts	 548
Flowchart Tools	 549

Decision Tables	 551
Decision Table Basics	 551
List the Conditions	 551
List All Possible Alternatives	 552
Specify Results and Rules	 552
Interpret Rules	 553
Optimize the Rules	 554
Check for Completeness and Accuracy	 555

Summary	 555

Key Terms	 556

Module 31
Unified Modeling Language	 557
Purpose of Unified Modeling
Language (UML)	 557
Communicating Ideas to Other Programmers	 557

UML Diagram Parts	 558
Class Diagram Basics	 558
Use Case Diagram Basics	 559
Sequence Diagrams	 561

Using UML to Structure Programs	 562
UML Associations	 562
Translating UML to Code	 564

Summary	 568

Key Terms	 568

GLOSSARY� 569

index� 583

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Welcome to Readings from Programming with C11.
This text includes the stand-alone lessons and read-
ings from MindTap for Programming with C11 and is
intended to be used in conjunction with the MindTap
Reader for a complete learning experience.

MindTap Overview
Programming with C11 presents conceptual, lan-
guage-agnostic narrative with language-specific assets,
ungraded C11 coding Snippets, language-agnostic test
banks, and additional instructor resources. The goal of
this digital product is to develop content around the
concepts that are essential for understanding Com-
puter Science from a language-agnostic perspective.
Learners will gain a foundational understanding of
procedural programming, computer science concepts,
and object-oriented programming. Instructors have
identified the need for language-agnostic, conceptual
content that can be paired with hands-on practice in
a specific language. This 31-module text is designed to
provide that conceptual content paired with language-
specific examples and hands-on learning activities in
C11.

Course Objectives:
•  Develop a foundational knowledge of

coding principles, vocabulary, and core
concepts.

•  Use new foundational knowledge to
learn C11 programming skills.

•  Practice emerging coding skills in a low-
risk environment.

•  Apply learned concepts and skills to
assignments/activities that mimic real-
world experiences and environments.

C11 Version
We recommend downloading the latest version of
C11 before beginning this text. C1114 was used to
test all C11 code presented in the module figures.

MindTap Features
In addition to the readings included within this text,
the MindTap includes the following:

Course Orientation: Custom videos and readings pre-
pare students for the material and coding experiences
they will encounter in their course.

Videos: Animated videos demonstrate new program-
ming terms and concepts in an easy-to-understand for-
mat, increasing student confidence and learning.

Coding Snippets: These short, ungraded coding activities
are embedded within the MindTap Reader and provide
students an opportunity to practice new programming
concepts “in-the-moment.” Additional language-specific
“bridge content” helps transition the student from con-
ceptual understanding to application of C11 code.

Language-specific Examples: Figures within the nar-
rative illustrate the application of general concepts in
C11 code.

Instructor & Student Resources
Additional instructor and student resources for
this product are available online. Instructor assets
include an Instructor’s Manual, Teaching Online
Guide, PowerPoint® slides, and a test bank powered
by Cognero®. Student assets include source code
files and coding Snippets ReadMe. Sign up or sign in
at www.cengage.com to search for and access this
product and its online resources.

Preface

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Dr. Kyla McMullen is a tenure-track faculty member
in the University of Florida’s Computer & Information
Sciences & Engineering Department, specializing in
Human-Centered Computing. Her research interests
are in the perception, applications, and development
of 3D audio technologies. Dr. McMullen has authored
over 30 manuscripts in this line of research and is the
primary investigator for over 2 million dollars’ worth
of sponsored research projects.

Dr. Elizabeth A. Matthews is an Assistant Professor of
Computer Science at Washington and Lee University.
She has taught computer science since 2013 and has
been an active researcher in human–computer inter-
action and human-centered computing. Matthews has

published research in the areas of procedural genera-
tion, video game enjoyment factors, and freshwater
algae identification with HCI.

June Jamrich Parsons is an educator, digital book
pioneer, and co-author of Texty and McGuffey Award-
winning textbooks. She co-developed the first com-
mercially successful multimedia, interactive digital
textbook; one that set the bar for platforms now
being developed by educational publishers. Her
career includes extensive classroom teaching, prod-
uct design for eCourseware, textbook authoring for
Course Technology and Cengage, Creative Strategist
for MediaTechnics Corporation, and Director of Con-
tent for Veative Virtual Reality Labs.

About the Authors

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The unique approach for this book required a seasoned
team. Our thanks to Maria Garguilo who ushered the
manuscripts through every iteration and kept tight
rein on the schedule; to Mary E. Convertino who sup-
plied her expertise in learning design; to Lisa Ruffolo
for her excellent developmental edit; to Courtney
Cozzy who coordinated the project; to Kristin McNary
for her leadership in Cengage’s computing materials;
to Rajiv Malkan (Lone Star College) for his instruc-
tional input; to Wade Schofield (Liberty University)
for his reviewing expertise; and to John Freitas for his
meticulous code review. It was a pleasure to be part
of this professional and talented team. We hope that
instructors and students will appreciate our efforts
to provide this unique approach to computer science
and programming.

Kyla McMullen: Above all things, I would like to thank
God for giving me the gifts and talents that were uti-
lized to write this book. I would like to thank my amaz-
ing husband Ade Kumuyi for always being my rock,
sounding board, and biggest cheerleader. I thank my
parents, Rita and James McMullen for all of their sacri-
fices to raise me. Last but not least, I thank my spirited

friends who help me to remain sane, remind me of who
I am, and never let me forget whose I am.

Elizabeth Matthews: I want to thank my parents,
Drs. Geoff and Robin Matthews, for their support and
understanding in my journey. I would also like to thank
my advisor, Dr. Juan Gilbert, for seeing my dream to
the end. Finally, I would like to thank my cats, Oreo
and Laptop, who made sure that writing this book was
interrupted as often as possible.

June Jamrich Parsons: Computer programming can
be a truly satisfying experience. The reward when a
program runs flawlessly has to bring a smile even
to the most seasoned programmers. Working with
three programming languages for this project at the
same time was certainly challenging but provided
insights that can help students understand com-
putational thinking. I’ve thoroughly enjoyed work-
ing with the team to create these versatile learning
resources and would like to dedicate my efforts to
my mom, who has been a steadfast cheerleader for
me throughout my career. To the instructors and stu-
dents who use this book, my hope is that you enjoy
programming as much as I do.

Acknowledgments

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

MODULE

1
COMPUTATIONAL

THINKING
LEARNING OBJECTIVES:
1.1	 ALGORITHMS

1.1.1	 Define the term “algorithm” as a series of steps for
solving a problem or carrying out a task.

1.1.2	 State that algorithms are the underlying logic for
computer programs.

1.1.3	 Define the term “computer program.”

1.1.4	 Provide examples of algorithms used in everyday
technology applications.

1.1.5	 Confirm that there can be more than one algorithm
for a task or problem and that some algorithms
may be more efficient than others.

1.1.6	 Explain why computer scientists are interested in
algorithm efficiency.

1.1.7	 List the characteristics of an effective algorithm.

1.1.8	 Write an algorithm for accomplishing a simple,
everyday technology application.

1.1.9	 Write an alternate algorithm for an everyday
technology task.

1.1.10	 Select the more efficient of the two algorithms you
have written.

1.2	 DECOMPOSITION

1.2.1	 Define the term “decomposition” as a technique for
dividing a complex problem or solution into smaller
parts.

1.2.2	 Explain why decomposition is an important tool for
computer scientists.

1.2.3	 Differentiate the concepts of algorithms and
decomposition.

1.2.4	 Identify examples of structural decomposition.

1.2.5	 Identify examples of functional decomposition.

1.2.6	 Identify examples of object-oriented decomposition.

1.2.7	 Provide examples of decomposition in technology
applications.

1.2.8	 Explain how dependencies and cohesion relate to
decomposition.

1.3	 PATTERN IDENTIFICATION

1.3.1	 Define the term “pattern identification” as a technique
for recognizing similarities or characteristics among
the elements of a task or problem.

1.3.2	 Identify examples of fill-in-the-blank patterns.

1.3.3	 Identify examples of repetitive patterns.

1.3.4	 Identify examples of classification patterns.

1.3.5	 Provide examples of pattern identification in the real
world and in technology applications.

1.4	 ABSTRACTION

1.4.1	 Define the term “abstraction” as a technique for
generalization and for simplifying levels of complexity.

1.4.2	 Explain why abstraction is an important computer
science concept.

1.4.3	 Provide an example illustrating how abstraction can
help identify variables.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PROGRAMMING WITH C++2

1.1 ALGORITHMS

Algorithm Basics (1.1.1, 1.1.4)
A password might not be enough to protect your online accounts. Two-factor authentication adds an extra layer
of protection. A common form of two-factor authentication sends a personal identification number (PIN) to your
cell phone. To log in, you perform the series of steps shown in Figure 1-1.

1.4.4	 Provide examples of technology applications that
have abstracted or hidden details.

1.4.5	 Provide an example illustrating the use of a class as
an abstraction of a set of objects.

1.4.6	 Explain how the black box concept is an
implementation of abstraction.

1.4.7	 Identify appropriate levels of abstraction.

Figure 1-1 Steps for two-factor authentication

Connect to the site’s login page.
Enter your user ID.
Enter your password.
Wait for a text message containing a PIN
 to arrive on your smartphone.
On the site’s the login page, enter the PIN.

The procedure for two-factor authentication is an example of an algorithm. In a general sense, an algorithm
is a series of steps for solving a problem or carrying out a task.

Algorithms exist for everyday tasks and tasks that involve technology. Here are some examples:

•	A recipe for baking brownies
•	The steps for changing a tire
•	The instructions for pairing a smart watch with your phone
•	The payment process at an online store
•	The procedure for posting a tweet

Programming Algorithms (1.1.2, 1.1.3, 1.1.5)
Algorithms are also an important tool for programmers. A programming algorithm is a set of steps that speci-
fies the underlying logic and structure for the statements in a computer program. You can think of programming
algorithms as the blueprints for computer programs.

A computer program is a set of instructions, written in a programming language such as C++, Python, or
Java, that performs a specific task when executed by a digital device. A computer program is an implementation
of an algorithm.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Module 1  Computational Thinking 3

Q Programming algorithms tell the computer what to do. Can you tell which of these algorithms
is a programming algorithm?

Algorithm 1:

Connect to the website’s login page.

Enter your user ID.

Enter your password.

Wait for a text message containing a PIN to
arrive on your smartphone.

On the website’s login page, enter the PIN.

Algorithm 2:

Prompt the user to enter a user ID.

Prompt the user to enter a password.

Make sure that the user ID and password match.

If the user ID and password match:

Generate a random PIN.

Send the PIN to user’s phone.

Prompt the user to enter the PIN.

If the PIN is correct:

Allow access.

A Algorithm 1 is not a programming algorithm because it outlines instructions for the user.
Algorithm 2 is a programming algorithm because it specifies what the computer is supposed
to do. When you formulate a programming algorithm, the instructions should be for the
computer, not the user.

There can be more than one programming algorithm for solving a problem or performing a task, but some
algorithms are more efficient than others.

Q Here are two algorithms for summing the numbers from 1 to 10. Which algorithm is more
efficient?

Algorithm 1:

Add 1 1 2 to get a total.

Repeat these steps nine times:

Get the next number.

Add this number to the total.

Algorithm 2:

Get the last number in the series (10).

Divide 10 by 2 to get a result.

Add 10 1 1 to get a sum.

Multiply the result by the sum.

A Both algorithms contain four instructions, but Algorithm 2 is more efficient. You can use it to
amaze your friends by quickly calculating the total in only four steps. Algorithm 1 is also four
lines long, but two of the instructions are repeated nine times. Counting the first step, that’s
19 steps to complete this task!

“Good” Algorithms (1.1.6, 1.1.7)
Computer scientists are interested in designing what they call “good” algorithms. A good algorithm tends
to produce a computer program that operates efficiently, quickly, and reliably. Good algorithms have these
characteristics:

Input: The algorithm applies to a set of specified inputs.
Output: The algorithm produces one or more outputs.
Finite: The algorithm terminates after a finite number of steps.
Precise: Each step of the algorithm is clear and unambiguous.
Effective: The algorithm successfully produces the correct output.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PROGRAMMING WITH C++4

When formulating an algorithm, you can easily check to make sure it satisfies all the criteria for a good algo-
rithm. You can see how these criteria apply to an algorithm in Figure 1-2.

Figure 1-2 Is this a good algorithm?

Does the algorithm terminate?
Yes, after the fourth step.

Does the algorithm produce
the correct output?
Yes, it is 55.

Is there output? Yes.

Get the last number in the series (10).
Divide 10 by 2 to get a RESULT.
Add 10 + 1 to get a SUM.
Multiply the RESULT by the SUM to
 produce a total.

Is there input? Yes.

Are the steps precise and
unambiguous? Yes.

Selecting and Creating Algorithms (1.1.8, 1.1.9, 1.1.10)
Before coding, programmers consider various algorithms that might apply to a problem. You can come up with
an algorithm in three ways:

Use a standard algorithm. Programmers have created effective algorithms for many computing
tasks, such as sorting, searching, manipulating text, encrypting data, and finding the shortest path.
When you are familiar with these standard algorithms, you can easily incorporate them in programs.
Perform the task manually. When you can’t find a standard algorithm, you can formulate an
algorithm by stepping through a process manually, recording those steps, and then analyzing their
effectiveness.
Apply computational thinking techniques. Computational thinking is a set of techniques designed
to formulate problems and their solutions. You can use computational thinking techniques such as
decomposition, pattern identification, and abstraction to devise efficient algorithms. Let’s take a look
at these techniques in more detail.

1.2 DECOMPOSITION

Decomposition Basics (1.2.1)
A mobile banking app contains many components. It has to provide a secure login procedure, allow users to
manage preferences, display account balances, push out alerts, read checks for deposit, and perform other tasks
shown in Figure 1-3.

The algorithm for such an extensive app would be difficult to formulate without dividing it into smaller parts,
a process called decomposition. When devising an algorithm for a complex problem or task, decomposition can
help you deal with smaller, more manageable pieces of the puzzle.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Module 1  Computational Thinking 5

Structural Decomposition (1.2.2, 1.2.3, 1.2.4, 1.2.7)
The first step in decomposition is to identify structural units that perform distinct tasks. Figure 1-4 illustrates
how you might divide a mobile banking app into structural units, called modules.

Figure 1-4 Structural decomposition diagram

Mobile banking

Two-factor
authentication

Fingerprint
sign-in

Passcode/challenge
question changes

Account
management

Balances

Alerts

Direct
deposits

Payments and
transfers

Bill pay

Mobile check
deposits

Money
transfers

Secure login

Figure 1-3 A mobile banking app handles many
interacting tasks

Change user
preferences

Deposits

Withdrawals

Transfer money

Pay bills

Account balance

Secure login

Fraud alerts

iS
to

ck
.c

om
/v

ec
to

r.S

Structural decomposition is a process that identifies a hierarchy of structural units. At the lowest levels
of the hierarchy are modules, indicated in yellow in Figure 1-4, that have a manageable scope for creating
algorithms.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PROGRAMMING WITH C++6

Q Which module of the hierarchy chart is not fully decomposed?

A The module for modifying passwords and challenge questions could be further decomposed
into two modules: one module that allows users to change their passwords and one for
changing their challenge questions.

Here are some tips for creating a structural decomposition diagram:

•	Use a top-down approach. The nodes at the top break down into component parts in the nodes below them.
•	Label nodes with nouns and adjectives, rather than verbs. For example, “Account management” is the

correct noun phrase, rather than a verb phrase, such as “Manage accounts.”
•	Don’t worry about sequencing. Except for the actual login process, the components in a mobile bank-

ing system could be accessed in any order. This is a key difference between an algorithm and decom-
position. An algorithm specifies an order of activities, whereas decomposition specifies the parts of
a task.

Functional Decomposition (1.2.5)
Functional decomposition breaks down modules into smaller actions, processes, or steps. Figure 1-5 illustrates
a functional decomposition of the two-factor authentication module.

Figure 1-5 Functional decomposition diagram

Verify password

Prompt for
user ID

Prompt for
password

Generate
one-time

PIN

Look up
stored

user ID and
password

Compare
entered

date with
stored data

Handle
mismatches

Look up
user

mobile
number

Generate
text

message
with PIN

Send PIN
to

mobile

Prompt user
for PIN

Compare
user-entered

PIN to
generated PIN

Handle
mismatches

Validate
user ID and
password

match

Verify PIN

Nodes in yellow
require further
decomposition.

Nodes in green are
specific enough to

become steps in an
algorithm.

Verify login attempts

Notice how the levels of the functional decomposition diagram get more specific until the nodes in the lowest
levels begin to reveal instructions that should be incorporated in an algorithm.

Here are some tips for constructing functional decomposition diagrams and deriving algorithms from them:

•	Label nodes with verb phrases. In contrast to the nodes of a structural decomposition diagram, the
nodes of a functional decomposition are labeled with verb phrases that indicate “what” is to be done.

•	Sequence from left to right. Reading left to right on the diagram should correspond to the sequence in
which steps in the algorithm are performed.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Module 1  Computational Thinking 7

Object-Oriented Decomposition (1.2.6)
Another way to apply decomposition to a module is to look for logical and physical objects that a computer
program will manipulate. Figure 1-6 illustrates an object-oriented decomposition of the two-factor authentica-
tion module.

Figure 1-6 Object-oriented decomposition diagram

Login screen

PIN generator

Valid user

Attribute: Valid user ID
Attribute: Valid password
Attribute: Mobile number

Attribute: One-time PIN
Methods

describe what an
object can do.

Each node
represents an

object.

Attributes
describe an

object.

Attribute: Entered user ID
Attribute: Entered password

Method: Display login boxes
Method: Verify entered user ID
 and password
Method: Verify PIN
Method: Handle mismatches

Method: Generate random PIN
Method: Send PIN to mobile
 number

An object-oriented decomposition does not produce a hierarchy. Instead it produces a collection of objects
that can represent people, places, or things.

Tips for object-oriented decomposition:

•	Node titles are nouns. Each node in the object-oriented decomposition diagram is labeled with a noun.
•	Attributes are nouns. A node can contain a list of attributes, which relate to the characteristics of an object.
•	Methods are verb phrases. An object can also contain methods, which are actions that an object can

perform. You may need to devise an algorithm for each method.
•	Sketch in connection arrows. Connection arrows help you visualize how objects share data.

Dependencies and Cohesion (1.2.8)
You might wonder if there is a correct way to decompose a problem or task. In practice, there may be several
viable ways to apply decomposition, but an effective breakdown minimizes dependencies and maximizes cohe-
sion among the various parts.

The principles of decomposition are:

•	Minimize dependencies. Although input and output may flow between nodes, changing the instructions
in one module or object should not require changes to others.

•	Maximize cohesion. Each object or module contains attributes, methods, or instructions that perform a
single logical task or represent a single entity.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PROGRAMMING WITH C++8

1.3 PATTERN IDENTIFICATION

Pattern Identification Basics (1.3.1, 1.3.2)
The Amaze-Your-Friends math trick for quickly adding numbers from 1 to 10 is very simple:

Get the last number in the series (10).
Divide 10 by 2 to get a result.
Add 10 1 1 to get a sum.
Multiply the result by the sum.

Q Try the algorithm yourself. What is your answer?

A If your math is correct, your answer should be 55.

Now, what if the challenge is to add the numbers from 1 to 200? That algorithm looks like this:

Get the last number in the series (200).
Divide 200 by 2 to get a result.
Add 200 1 1 to get a sum.
Multiply the result by the sum.

Notice a pattern? This fill-in-the-blank algorithm works for any number:
Get the last number in the series (____________________).
Divide ____________________ by 2 to get a result.
Add ____________________ 1 1 to get a sum.
Multiply the result by the sum.

The process of finding similarities in procedures and tasks is called pattern identification. It is a useful com-
putational thinking technique for creating algorithms that can be used and reused on different data sets. By recog-
nizing the pattern in the Amaze-Your-Friends math trick, you can use the algorithm to find the total of any series
of numbers.

Repetitive Patterns (1.3.3)
In addition to fill-in-the-blank patterns, you might also find repetitive patterns as you analyze tasks and problems.
Think about this algorithm, which handles logins to a social media site:

Get a user ID.
Get a password.
If the password is correct, allow access.
If the password is not correct, get the password again.
If the password is correct, allow access.
If the password is not correct, get the password again.
If the password is correct, allow access.
If the password is not correct, get the password again.
If the password is correct, allow access.
If the password is not correct, lock the account.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Module 1  Computational Thinking 9

Q How many repetition patterns do you recognize?

A Two lines are repeated three times:
If the password is not correct, get the password again.
If the password is correct, allow access.

Recognizing this repetition, you can streamline the algorithm like this:
Get a password.
Repeat three times:

If the password is correct, allow access.
If the password is not correct, get the password again.

If the password is correct, allow access.
If the password is not correct, lock the account.

Classification Patterns (1.3.4, 1.3.5)
Everyone who subscribes to a social media site has a set of login credentials. Here are Lee’s and Priya’s:

Lee’s login credentials:

Lee’s user ID: LeezyBranson@gmail.com

Lee’s password: MyCat411

Lee’s mobile number: 415-999-1234

Priya’s login credentials:

Priya’s user ID: PriyaMontell@gmail.com

Priya’s password: ouY52311v

Priya’s mobile number: 906-222-0987

The series of attributes that define each user’s login credentials have a pattern of similarities. Each user
has three attributes: a user ID, a password, and a mobile number. By recognizing this pattern, you can create a
template for any user’s login credentials like this:

User ID: ____________________
Password: ____________________
Mobile number: ____________________

You can often discover classification patterns in the attributes that describe any person or object. Identify-
ing classification patterns can help you design programs that involve databases because the template identifies
fields, such as User ID, that contain data.

Classification patterns also come in handy if you want to design programs based on the interactions among
a variety of objects, rather than a step-by-step algorithm. In some programming circles, templates are called
classes because they specify the attributes for a classification of objects. For example, people classified as social
media subscribers have attributes for login credentials. Vehicles classified as cars have attributes such as color,
make, model, and VIN number. Businesses classified as restaurants have a name, hours of operation, and a menu.

1.4 ABSTRACTION

Abstraction Basics (1.4.1, 1.4.2, 1.4.3)
Think back to the Amaze-Your-Friends math trick. By identifying a pattern, you formulated a general algorithm
that works for a sequence of any length, whether it is a sequence of 1 to 10 or 1 to 200.

Get the last number in the series (____________________).
Divide ____________________ by 2 to get a result.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

