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Welcome to Readings from Programming with C11. 
This text includes the stand-alone lessons and read-
ings from MindTap for Programming with C11 and is 
intended to be used in conjunction with the MindTap 
Reader for a complete learning experience.

MindTap Overview
Programming with C11 presents conceptual, lan-
guage-agnostic narrative with language-specific assets, 
ungraded C11 coding Snippets, language-agnostic test 
banks, and additional instructor resources. The goal of 
this digital product is to develop content around the 
concepts that are essential for understanding Com-
puter Science from a language-agnostic perspective. 
Learners will gain a foundational understanding of 
procedural programming, computer science concepts, 
and object-oriented programming. Instructors have 
identified the need for language-agnostic, conceptual 
content that can be paired with hands-on practice in 
a specific language. This 31-module text is designed to 
provide that conceptual content paired with language-
specific examples and hands-on learning activities in 
C11. 

Course Objectives:
•  Develop a foundational knowledge of 

coding principles, vocabulary, and core 
concepts.

•  Use new foundational knowledge to 
learn C11 programming skills.

•  Practice emerging coding skills in a low-
risk environment.

•  Apply learned concepts and skills to 
assignments/activities that mimic real-
world experiences and environments.

C11 Version
We recommend downloading the latest version of 
C11 before beginning this text. C1114 was used to 
test all C11 code presented in the module figures. 

MindTap Features
In addition to the readings included within this text, 
the MindTap includes the following:

Course Orientation: Custom videos and readings pre-
pare students for the material and coding experiences 
they will encounter in their course. 

Videos: Animated videos demonstrate new program-
ming terms and concepts in an easy-to-understand for-
mat, increasing student confidence and learning. 

Coding Snippets: These short, ungraded coding activities 
are embedded within the MindTap Reader and provide 
students an opportunity to practice new programming 
concepts “in-the-moment.” Additional language-specific 
“bridge content” helps transition the student from con-
ceptual understanding to application of C11 code.

Language-specific Examples: Figures within the nar-
rative illustrate the application of general concepts in 
C11 code.

Instructor & Student Resources
Additional instructor and student resources for 
this product are available online. Instructor assets 
include an Instructor’s Manual, Teaching Online 
Guide, PowerPoint® slides, and a test bank powered 
by Cognero®. Student assets include source code 
files and coding Snippets ReadMe. Sign up or sign in 
at www.cengage.com to search for and access this 
product and its online resources. 

Preface
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Sciences & Engineering Department, specializing in 
Human-Centered Computing. Her research interests 
are in the perception, applications, and development 
of 3D audio technologies. Dr. McMullen has authored 
over 30 manuscripts in this line of research and is the 
primary investigator for over 2 million dollars’ worth 
of sponsored research projects. 

Dr. Elizabeth A. Matthews is an Assistant Professor of 
Computer Science at Washington and Lee University. 
She has taught computer science since 2013 and has 
been an active researcher in human–computer inter-
action and human-centered computing. Matthews has 

published research in the areas of procedural genera-
tion, video game enjoyment factors, and freshwater 
algae identification with HCI. 

June Jamrich Parsons is an educator, digital book 
pioneer, and co-author of Texty and McGuffey Award-
winning textbooks. She co-developed the first com-
mercially successful multimedia, interactive digital 
textbook; one that set the bar for platforms now 
being developed by educational publishers. Her 
career includes extensive classroom teaching, prod-
uct design for eCourseware, textbook authoring for 
Course Technology and Cengage, Creative Strategist 
for MediaTechnics Corporation, and Director of Con-
tent for Veative Virtual Reality Labs. 

About the Authors

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The unique approach for this book required a seasoned 
team. Our thanks to Maria Garguilo who ushered the 
manuscripts through every iteration and kept tight 
rein on the schedule; to Mary E. Convertino who sup-
plied her expertise in learning design; to Lisa Ruffolo 
for her excellent developmental edit; to Courtney 
Cozzy who coordinated the project; to Kristin McNary 
for her leadership in Cengage’s computing materials; 
to Rajiv Malkan (Lone Star College) for his instruc-
tional input; to Wade Schofield (Liberty University) 
for his reviewing expertise; and to John Freitas for his 
meticulous code review. It was a pleasure to be part 
of this professional and talented team. We hope that 
instructors and students will appreciate our efforts 
to provide this unique approach to computer science 
and programming.

Kyla McMullen: Above all things, I would like to thank 
God for giving me the gifts and talents that were uti-
lized to write this book. I would like to thank my amaz-
ing husband Ade Kumuyi for always being my rock, 
sounding board, and biggest cheerleader. I thank my 
parents, Rita and James McMullen for all of their sacri-
fices to raise me. Last but not least, I thank my spirited 

friends who help me to remain sane, remind me of who 
I am, and never let me forget whose I am. 

Elizabeth Matthews: I want to thank my parents, 
Drs. Geoff and Robin Matthews, for their support and 
understanding in my journey. I would also like to thank 
my advisor, Dr. Juan Gilbert, for seeing my dream to 
the end. Finally, I would like to thank my cats, Oreo 
and Laptop, who made sure that writing this book was 
interrupted as often as possible. 

June Jamrich Parsons: Computer programming can 
be a truly satisfying experience. The reward when a 
program runs flawlessly has to bring a smile even 
to the most seasoned programmers. Working with 
three programming languages for this project at the 
same time was certainly challenging but provided 
insights that can help students understand com-
putational thinking. I’ve thoroughly enjoyed work-
ing with the team to create these versatile learning 
resources and would like to dedicate my efforts to 
my mom, who has been a steadfast cheerleader for 
me throughout my career. To the instructors and stu-
dents who use this book, my hope is that you enjoy 
programming as much as I do. 

Acknowledgments

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



MODULE 

1
COMPUTATIONAL 

THINKING
LEARNING OBJECTIVES:
1.1	 ALGORITHMS

1.1.1	 Define the term “algorithm” as a series of steps for 
solving a problem or carrying out a task.

1.1.2	 State that algorithms are the underlying logic for 
computer programs.

1.1.3	 Define the term “computer program.”

1.1.4	 Provide examples of algorithms used in everyday 
technology applications.

1.1.5	 Confirm that there can be more than one algorithm 
for a task or problem and that some algorithms 
may be more efficient than others.

1.1.6	 Explain why computer scientists are interested in 
algorithm efficiency.

1.1.7	 List the characteristics of an effective algorithm.

1.1.8	 Write an algorithm for accomplishing a simple, 
everyday technology application.

1.1.9	 Write an alternate algorithm for an everyday 
technology task.

1.1.10	 Select the more efficient of the two algorithms you 
have written.

1.2	 DECOMPOSITION

1.2.1	 Define the term “decomposition” as a technique for 
dividing a complex problem or solution into smaller 
parts.

1.2.2	 Explain why decomposition is an important tool for 
computer scientists.

1.2.3	 Differentiate the concepts of algorithms and 
decomposition.

1.2.4	 Identify examples of structural decomposition.

1.2.5	 Identify examples of functional decomposition.

1.2.6	 Identify examples of object-oriented decomposition.

1.2.7	 Provide examples of decomposition in technology 
applications.

1.2.8	 Explain how dependencies and cohesion relate to 
decomposition.

1.3	 PATTERN IDENTIFICATION

1.3.1	 Define the term “pattern identification” as a technique 
for recognizing similarities or characteristics among 
the elements of a task or problem.

1.3.2	 Identify examples of fill-in-the-blank patterns.

1.3.3	 Identify examples of repetitive patterns.

1.3.4	 Identify examples of classification patterns.

1.3.5	 Provide examples of pattern identification in the real 
world and in technology applications.

1.4	 ABSTRACTION

1.4.1	 Define the term “abstraction” as a technique for 
generalization and for simplifying levels of complexity.

1.4.2	 Explain why abstraction is an important computer 
science concept.

1.4.3	 Provide an example illustrating how abstraction can 
help identify variables.
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PROGRAMMING WITH C++2

1.1 ALGORITHMS

Algorithm Basics (1.1.1, 1.1.4)
A password might not be enough to protect your online accounts. Two-factor authentication adds an extra layer 
of protection. A common form of two-factor authentication sends a personal identification number (PIN) to your 
cell phone. To log in, you perform the series of steps shown in Figure 1-1.

1.4.4	 Provide examples of technology applications that 
have abstracted or hidden details.

1.4.5	 Provide an example illustrating the use of a class as 
an abstraction of a set of objects.

1.4.6	 Explain how the black box concept is an 
implementation of abstraction.

1.4.7	 Identify appropriate levels of abstraction.

Figure 1-1 Steps for two-factor authentication

Connect to the site’s login page.
Enter your user ID.
Enter your password.
Wait for a text message containing a PIN
 to arrive on your smartphone.
On the site’s the login page, enter the PIN.

The procedure for two-factor authentication is an example of an algorithm. In a general sense, an algorithm 
is a series of steps for solving a problem or carrying out a task.

Algorithms exist for everyday tasks and tasks that involve technology. Here are some examples:

•	A recipe for baking brownies
•	The steps for changing a tire
•	The instructions for pairing a smart watch with your phone
•	The payment process at an online store
•	The procedure for posting a tweet

Programming Algorithms (1.1.2, 1.1.3, 1.1.5)
Algorithms are also an important tool for programmers. A programming algorithm is a set of steps that speci-
fies the underlying logic and structure for the statements in a computer program. You can think of programming 
algorithms as the blueprints for computer programs.

A computer program is a set of instructions, written in a programming language such as C++, Python, or 
Java, that performs a specific task when executed by a digital device. A computer program is an implementation 
of an algorithm.
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Module 1  Computational Thinking 3

Q Programming algorithms tell the computer what to do. Can you tell which of these algorithms 
is a programming algorithm?

Algorithm 1:

Connect to the website’s login page.

Enter your user ID.

Enter your password.

Wait for a text message containing a PIN to  
arrive on your smartphone.

On the website’s login page, enter the PIN.

Algorithm 2:

Prompt the user to enter a user ID.

Prompt the user to enter a password.

Make sure that the user ID and password match.

If the user ID and password match:

Generate a random PIN.

Send the PIN to user’s phone.

Prompt the user to enter the PIN.

If the PIN is correct:

Allow access.

A Algorithm 1 is not a programming algorithm because it outlines instructions for the user. 
Algorithm 2 is a programming algorithm because it specifies what the computer is supposed 
to do. When you formulate a programming algorithm, the instructions should be for the 
computer, not the user.

There can be more than one programming algorithm for solving a problem or performing a task, but some 
algorithms are more efficient than others.

Q Here are two algorithms for summing the numbers from 1 to 10. Which algorithm is more 
efficient?

Algorithm 1:

Add 1 1 2 to get a total.

Repeat these steps nine times:

Get the next number.

Add this number to the total.

Algorithm 2:

Get the last number in the series (10).

Divide 10 by 2 to get a result.

Add 10 1 1 to get a sum.

Multiply the result by the sum.

A Both algorithms contain four instructions, but Algorithm 2 is more efficient. You can use it to 
amaze your friends by quickly calculating the total in only four steps. Algorithm 1 is also four 
lines long, but two of the instructions are repeated nine times. Counting the first step, that’s 
19 steps to complete this task!

“Good” Algorithms (1.1.6, 1.1.7)
Computer scientists are interested in designing what they call “good” algorithms. A good algorithm tends 
to produce a computer program that operates efficiently, quickly, and reliably. Good algorithms have these 
characteristics:

Input: The algorithm applies to a set of specified inputs.
Output: The algorithm produces one or more outputs.
Finite: The algorithm terminates after a finite number of steps.
Precise: Each step of the algorithm is clear and unambiguous.
Effective: The algorithm successfully produces the correct output.
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PROGRAMMING WITH C++4

When formulating an algorithm, you can easily check to make sure it satisfies all the criteria for a good algo-
rithm. You can see how these criteria apply to an algorithm in Figure 1-2.

Figure 1-2 Is this a good algorithm?

Does the algorithm terminate?
Yes, after the fourth step.

Does the algorithm produce
the correct output?
Yes, it is 55. 

Is there output? Yes.

Get the last number in the series (10).
Divide 10 by 2 to get a RESULT.
Add 10 + 1 to get a SUM.
Multiply the RESULT by the SUM to
      produce a total. 

Is there input? Yes.

Are the steps precise and
unambiguous? Yes. 

Selecting and Creating Algorithms (1.1.8, 1.1.9, 1.1.10)
Before coding, programmers consider various algorithms that might apply to a problem. You can come up with 
an algorithm in three ways:

Use a standard algorithm. Programmers have created effective algorithms for many computing 
tasks, such as sorting, searching, manipulating text, encrypting data, and finding the shortest path. 
When you are familiar with these standard algorithms, you can easily incorporate them in programs.
Perform the task manually. When you can’t find a standard algorithm, you can formulate an 
algorithm by stepping through a process manually, recording those steps, and then analyzing their 
effectiveness.
Apply computational thinking techniques. Computational thinking is a set of techniques designed 
to formulate problems and their solutions. You can use computational thinking techniques such as 
decomposition, pattern identification, and abstraction to devise efficient algorithms. Let’s take a look 
at these techniques in more detail.

1.2 DECOMPOSITION

Decomposition Basics (1.2.1)
A mobile banking app contains many components. It has to provide a secure login procedure, allow users to 
manage preferences, display account balances, push out alerts, read checks for deposit, and perform other tasks 
shown in Figure 1-3.

The algorithm for such an extensive app would be difficult to formulate without dividing it into smaller parts, 
a process called decomposition. When devising an algorithm for a complex problem or task, decomposition can 
help you deal with smaller, more manageable pieces of the puzzle.
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Structural Decomposition (1.2.2, 1.2.3, 1.2.4, 1.2.7)
The first step in decomposition is to identify structural units that perform distinct tasks. Figure 1-4 illustrates 
how you might divide a mobile banking app into structural units, called modules.

Figure 1-4 Structural decomposition diagram

Mobile banking

Two-factor
authentication 

Fingerprint
sign-in

Passcode/challenge
question changes 

Account
management 

Balances

Alerts

Direct
deposits

Payments and
transfers 

Bill pay

Mobile check
deposits 

Money
transfers

Secure login

Figure 1-3 A mobile banking app handles many 
interacting tasks

Change user 
preferences

Deposits

Withdrawals
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Pay bills

Account balance

Secure login

Fraud alerts
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Structural decomposition is a process that identifies a hierarchy of structural units. At the lowest levels 
of the hierarchy are modules, indicated in yellow in Figure 1-4, that have a manageable scope for creating 
algorithms.
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PROGRAMMING WITH C++6

Q Which module of the hierarchy chart is not fully decomposed?

A The module for modifying passwords and challenge questions could be further decomposed 
into two modules: one module that allows users to change their passwords and one for 
changing their challenge questions.

Here are some tips for creating a structural decomposition diagram:

•	Use a top-down approach. The nodes at the top break down into component parts in the nodes below them.
•	Label nodes with nouns and adjectives, rather than verbs. For example, “Account management” is the 

correct noun phrase, rather than a verb phrase, such as “Manage accounts.”
•	Don’t worry about sequencing. Except for the actual login process, the components in a mobile bank-

ing system could be accessed in any order. This is a key difference between an algorithm and decom-
position. An algorithm specifies an order of activities, whereas decomposition specifies the parts of 
a task.

Functional Decomposition (1.2.5)
Functional decomposition breaks down modules into smaller actions, processes, or steps. Figure 1-5 illustrates 
a functional decomposition of the two-factor authentication module.

Figure 1-5 Functional decomposition diagram

Verify password

Prompt for
user ID

Prompt for
password

Generate
one-time

PIN

Look up
stored

user ID and
password

Compare
entered

date with
stored data

Handle
mismatches

Look up
user

mobile
number

Generate
text

message
with PIN

Send PIN
to 

mobile

Prompt user
for PIN

Compare
user-entered

PIN to
generated PIN

Handle
mismatches

Validate
user ID and
password

match

Verify PIN

Nodes in yellow
require further
decomposition.

Nodes in green are
specific enough to

become steps in an
algorithm.

Verify login attempts

Notice how the levels of the functional decomposition diagram get more specific until the nodes in the lowest 
levels begin to reveal instructions that should be incorporated in an algorithm.

Here are some tips for constructing functional decomposition diagrams and deriving algorithms from them:

•	Label nodes with verb phrases. In contrast to the nodes of a structural decomposition diagram, the 
nodes of a functional decomposition are labeled with verb phrases that indicate “what” is to be done.

•	Sequence from left to right. Reading left to right on the diagram should correspond to the sequence in 
which steps in the algorithm are performed.
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Object-Oriented Decomposition (1.2.6)
Another way to apply decomposition to a module is to look for logical and physical objects that a computer 
program will manipulate. Figure 1-6 illustrates an object-oriented decomposition of the two-factor authentica-
tion module.

Figure 1-6 Object-oriented decomposition diagram

Login screen

PIN generator

Valid user

Attribute: Valid user ID
Attribute: Valid password
Attribute: Mobile number

Attribute: One-time PIN
Methods

describe what an
object can do.

Each node
represents an

object.

Attributes
describe an

object.

Attribute: Entered user ID
Attribute: Entered password

Method: Display login boxes
Method: Verify entered user ID
 and password
Method: Verify PIN
Method: Handle mismatches

Method: Generate random PIN
Method: Send PIN to mobile
              number

An object-oriented decomposition does not produce a hierarchy. Instead it produces a collection of objects 
that can represent people, places, or things.

Tips for object-oriented decomposition:

•	Node titles are nouns. Each node in the object-oriented decomposition diagram is labeled with a noun.
•	Attributes are nouns. A node can contain a list of attributes, which relate to the characteristics of an object.
•	Methods are verb phrases. An object can also contain methods, which are actions that an object can 

perform. You may need to devise an algorithm for each method.
•	Sketch in connection arrows. Connection arrows help you visualize how objects share data.

Dependencies and Cohesion (1.2.8)
You might wonder if there is a correct way to decompose a problem or task. In practice, there may be several 
viable ways to apply decomposition, but an effective breakdown minimizes dependencies and maximizes cohe-
sion among the various parts.

The principles of decomposition are:

•	Minimize dependencies. Although input and output may flow between nodes, changing the instructions 
in one module or object should not require changes to others.

•	Maximize cohesion. Each object or module contains attributes, methods, or instructions that perform a 
single logical task or represent a single entity.
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1.3 PATTERN IDENTIFICATION

Pattern Identification Basics (1.3.1, 1.3.2)
The Amaze-Your-Friends math trick for quickly adding numbers from 1 to 10 is very simple:

Get the last number in the series (10).
Divide 10 by 2 to get a result.
Add 10 1 1 to get a sum.
Multiply the result by the sum.

Q Try the algorithm yourself. What is your answer?

A If your math is correct, your answer should be 55.

Now, what if the challenge is to add the numbers from 1 to 200? That algorithm looks like this:

Get the last number in the series (200).
Divide 200 by 2 to get a result.
Add 200 1 1 to get a sum.
Multiply the result by the sum.

Notice a pattern? This fill-in-the-blank algorithm works for any number:
Get the last number in the series (____________________).
Divide ____________________ by 2 to get a result.
Add ____________________ 1 1 to get a sum.
Multiply the result by the sum.

The process of finding similarities in procedures and tasks is called pattern identification. It is a useful com-
putational thinking technique for creating algorithms that can be used and reused on different data sets. By recog-
nizing the pattern in the Amaze-Your-Friends math trick, you can use the algorithm to find the total of any series 
of numbers.

Repetitive Patterns (1.3.3)
In addition to fill-in-the-blank patterns, you might also find repetitive patterns as you analyze tasks and problems. 
Think about this algorithm, which handles logins to a social media site:

Get a user ID.
Get a password.
If the password is correct, allow access.
If the password is not correct, get the password again.
If the password is correct, allow access.
If the password is not correct, get the password again.
If the password is correct, allow access.
If the password is not correct, get the password again.
If the password is correct, allow access.
If the password is not correct, lock the account.
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Q How many repetition patterns do you recognize?

A Two lines are repeated three times:
If the password is not correct, get the password again.
If the password is correct, allow access.

Recognizing this repetition, you can streamline the algorithm like this:
Get a password.
Repeat three times:

If the password is correct, allow access.
If the password is not correct, get the password again.

If the password is correct, allow access.
If the password is not correct, lock the account.

Classification Patterns (1.3.4, 1.3.5)
Everyone who subscribes to a social media site has a set of login credentials. Here are Lee’s and Priya’s:

Lee’s login credentials:

Lee’s user ID: LeezyBranson@gmail.com

Lee’s password: MyCat411

Lee’s mobile number: 415-999-1234

Priya’s login credentials:

Priya’s user ID: PriyaMontell@gmail.com

Priya’s password: ouY52311v

Priya’s mobile number: 906-222-0987

The series of attributes that define each user’s login credentials have a pattern of similarities. Each user 
has three attributes: a user ID, a password, and a mobile number. By recognizing this pattern, you can create a 
template for any user’s login credentials like this:

User ID: ____________________
Password: ____________________
Mobile number: ____________________

You can often discover classification patterns in the attributes that describe any person or object. Identify-
ing classification patterns can help you design programs that involve databases because the template identifies 
fields, such as User ID, that contain data.

Classification patterns also come in handy if you want to design programs based on the interactions among 
a variety of objects, rather than a step-by-step algorithm. In some programming circles, templates are called 
classes because they specify the attributes for a classification of objects. For example, people classified as social 
media subscribers have attributes for login credentials. Vehicles classified as cars have attributes such as color, 
make, model, and VIN number. Businesses classified as restaurants have a name, hours of operation, and a menu.

1.4 ABSTRACTION

Abstraction Basics (1.4.1, 1.4.2, 1.4.3)
Think back to the Amaze-Your-Friends math trick. By identifying a pattern, you formulated a general algorithm 
that works for a sequence of any length, whether it is a sequence of 1 to 10 or 1 to 200.

Get the last number in the series (____________________).
Divide ____________________ by 2 to get a result.
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